
Ibn Tofail University
Faculty of Sciences, Kenitra

End of Study Project Thesis

Artificial Intelligence and Virtual Reality Master

AI-Assisted Solutions for Dynamic
Chart and Form Generation

Host establishment: E-Quality Engineering

Developed by: Mr. Abdessamie Nachi

Supervised by: Mrs. Khaoula Boukir(ENSC KENITRA (UIT))

Mr. Youness Laassouly (E-Quality Engineering)

19 November 2024, before the jury composed of:

• Mrs. Raja Touahni (FS Kenitra (UIT))

• Mr. Rochdi Messoussi (FS Kenitra (UIT))

• Mrs. Khaoula Boukir (ENSC KENITRA (UIT))

• Mr. Anass Nouri (FS Kenitra (UIT))

• Mrs. Souad Eddarouich (CRMEF Rabat)

Academic year 2023/2024

ACKNOWLEDGEMENT

It is with sincere gratitude that I dedicate this section to express my deep gratitude to

all the people who were of indispensable support for the success of this project. On this

special occasion, I would like to express my gratitude to the coordinator of the Master

IARV, Mrs RAJAA TOUAHNI, for the quality of the training she gave us, as well as

for her support and accompaniment throughout my journey.

My sincere thanks also go to my internal supervisor, Mrs. KHAOULA BOUKIR,

for her valuable guidance throughout this work, Without her help and support throughout

this project, it would not have been possible. I would also like to thank the members of

the jury for agreeing to examine and evaluate my work.

I also express my gratitude to Mr. YOUNESS LAASSOULI, my external super-

visor, for his warm welcome, his effective supervision and his support throughout this

enriching professional experience.

With great respect, I express our great gratitude to the faculty of the Master artificial

intelligence and virtual reality for having taken a keen interest in our training, and for

having devoted most of their time, attention and energy to us in a framework pleasant

complicity and respect.

I would like to express my deepest gratitude to my family. To my mother and father,

for their unconditional love, constant support and sacrifices that allowed me to get where

I am today. To my brothers and my sisters, for their encouragement, their complicity and

their presence by my side throughout this journey. Your support has been an inexhaustible

source of motivation and comfort. I would also like to express my gratitude to all those who

have contributed directly or indirectly to the completion of this project. Their involvement

and support were essential, and I warmly thank them for their valuable collaboration.

1

Abstract

This report summarizes my final-year internship at E-Quality Engineering in Casablanca,

part of our master’s degree in Artificial Intelligence and Virtual Reality (IARV) at the Fac-

ulty of Sciences, Ibn Tofail University (UIT) in Kenitra. The project aimed to develop a

model capable of understanding natural language and accurately translating it into charts.

Titled ”Betterchart”, and also the developement of an AI system capable of helping the

user fill forms, by autcompleting some fields. Titled ”AI Assistant”, this project sought to

automate the conversion of textual descriptions into chart configuration using a provided

schema. The ability to automatically translate natural language into charts is crucial for

solutions that place great importance on data visualization. My project at E-Quality En-

gineering is part of this technological innovation effort, aiming to improve the accessibility

and efficiency of creating charts, while also keeping in mind issues such as inference time

and data privacy. In addition to this main project, during my internship, I also worked

on other tasks including Frontend and backend development, and server mangement. To

achieve our objectives, I started with an in-depth analysis of the needs and functionality

Specifications, followed by a data collection phase and executing fine-tuning methods for

large language models (LLM).

Keywords: E-QUALITY ENGIENNERING, BETTERFLY, CONFIG, DATABASE,

CHARTS, FORMS, QHSE, AUTOCOMPLETE, ISO.

2

Résumé

Ce rapport résume mon stage de fin d’études chez E-Quality Engineering à Casablanca,

dans le cadre de notre master en Intelligence Artificielle et Réalité Virtuelle (IARV) à la

Faculté des Sciences, Université Ibn Tofail (UIT) à Kénitra. Le projet visait à développer

un modèle capable de comprendre le langage naturel et de le traduire avec précision en

graphiques. Intitulé ”Betterchart”, et également le développement d’un système d’IA

capable d’aider l’utilisateur à remplir des formulaires, en complétant automatiquement

certains champs. Intitulé ”AI Assistant”, ce projet visait à automatiser la conversion de

descriptions textuelles en configuration de graphiques à l’aide d’un schéma fourni. La ca-

pacité de traduire automatiquement le langage naturel en graphiques est cruciale pour les

solutions qui accordent une grande importance à la visualisation des données. Mon projet

chez E-Quality Engineering s’inscrit dans cet effort d’innovation technologique, visant à

améliorer l’accessibilité et l’efficacité de la création de graphiques, tout en gardant à l’esprit

des problèmes tels que le temps d’inférence et la confidentialité des données. En plus de ce

projet principal, pendant mon stage, j’ai également travaillé sur d’autres tâches, notam-

ment le développement front-end et back-end, et la gestion des serveurs. Pour atteindre

nos objectifs, j’ai commencé par une analyse approfondie des besoins et des fonctionnalités

des spécifications, suivie d’une phase de collecte de données et d’exécution de méthodes

de finetune pour les LLMs.

Mots clés : E-QUALITY ENGIENNERING, BETTERFLY, CONFIG, DATABASE,

CHARTS, FORMS, QHSE, AUTOCOMPLETE, ISO.

3

Table of Contents

Table of Contents 7

List of Figures 8

List of Tables 9

General Introduction 11

1 Company introduction 12

1.1 Introduction . 12

1.2 E-QUALITY ENGINEERING . 12

1.2.1 Overview . 12

1.2.2 Services and Expertise . 12

1.2.3 Experience and Impact . 13

1.3 Solution QHSE . 13

1.3.1 Definition and Importance . 13

1.3.2 Betterfly’s Role . 13

1.4 Fundamental Values . 13

1.4.1 Core Values . 13

1.4.2 Culture and Ethics . 14

1.5 Betterfly . 14

1.5.1 Company Overview . 14

1.5.2 Product and Services . 14

1.6 Data In Betterfly . 14

1.6.1 Data Management . 14

1.6.2 Use of Data . 14

1.7 Technologies Used - Betterfly . 15

1.7.1 Tech Stack . 15

1.7.2 Integration and Scalability . 15

1.8 Charts In Betterfly . 15

1.8.1 Chart Types and Functions . 15

1.8.2 Customization and Interaction . 15

1.9 AI Assistants in Betterfly . 16

4

Table of Contents Table of Contents

1.9.1 Role of AI . 16

1.9.2 Adaptability and Customization . 16

1.9.3 Future Scope . 16

1.10 Betterchart problem statement . 16

1.10.1 Similar Applications . 17

1.10.2 Limitations . 17

1.11 Solution . 18

1.12 Approach . 18

1.13 Conclusion . 19

2 Tools and Technologies used 20

2.1 Introduction . 20

2.2 LLMs . 20

2.2.1 Definition of LLMs . 21

2.2.2 Types of LLMs . 21

2.2.3 State of the art . 22

2.2.4 Applications of LLMs . 22

2.2.5 Current limitations and challenges 22

2.2.6 Some benchmarks and comparisons 23

2.3 Languages . 23

2.3.1 Python . 23

2.3.2 React . 23

2.3.3 NodeJs . 23

2.3.4 SQL . 24

2.3.5 GraphQL . 24

2.4 Platforms . 24

2.4.1 Hugginface . 24

2.4.2 Google Colab . 25

2.4.3 Azure . 25

2.4.4 AWS Amplify . 25

2.5 Frameworks and Libraries . 25

2.5.1 ChartJS . 25

2.5.2 Datasets . 26

2.5.3 Transformers . 26

2.5.4 Unsloth . 26

2.5.5 Torch . 26

2.5.6 Accelerate . 26

2.5.7 Scipy . 26

2.5.8 Xformers . 27

2.5.9 Safetensors . 27

2.5.10 peft . 27

5

Table of Contents Table of Contents

2.5.11 sklearn . 27

2.5.12 PyPDF2 . 27

2.6 Communications and meeting tools . 27

2.6.1 Google Meet . 27

2.6.2 Notion . 28

2.7 Industrialization tools . 28

2.7.1 Docker . 28

2.7.2 Git . 28

2.7.3 Github . 29

2.8 Conclusion . 29

3 BetterChart 31

3.1 Introduction . 31

3.2 Approach followed . 31

3.2.1 System Architechture overview . 32

3.3 Setting up BetterChart - (DynamicChartJS) 32

3.4 Training . 33

3.4.1 Data Collection . 33

3.4.2 Data Augmentation . 33

3.4.3 Data processing . 34

3.4.4 Choice of model . 34

3.5 Prompt Engineering . 34

3.6 Finetuning . 35

3.6.1 What is Fine-tuning? . 35

3.7 Results . 36

3.8 Evaluation . 36

3.9 Result interpretation . 37

3.9.1 Chart Type . 37

3.9.2 X . 37

3.9.3 Y . 37

3.9.4 X Group . 38

3.9.5 Y Group . 38

3.9.6 isStacked . 38

3.9.7 isFiltered . 38

3.9.8 Filter Key . 38

3.9.9 Filter Value . 38

3.9.10 Filter Operator . 38

3.9.11 Formula . 38

3.9.12 Colors . 39

3.10 Similarity check . 39

3.11 Graph synthese . 39

6

Table of Contents Table of Contents

3.11.1 Introduction . 39

3.11.2 Models . 39

3.11.3 Implementation Approach . 40

3.12 Integrating . 40

3.13 The Model in Action in Betterfly . 40

3.14 Conclusion . 44

4 AI Assistant 45

4.1 Introduction . 45

4.2 Similar Applications . 46

4.2.1 Google Forms and Auto-complete Features 46

4.2.2 Intelligent CRMs . 46

4.2.3 Medical Record Systems . 46

4.3 Limitations . 46

4.3.1 Domain-Specific Challenges . 46

4.3.2 Lack of Training Data . 47

4.4 Training . 47

4.4.1 Data Collection . 47

4.4.2 Data processing . 48

4.4.3 Choice of Model . 48

4.5 Prompt Engineering . 49

4.5.1 Extracting Guidelines from ISO Standards 49

4.5.2 Guiding the Model with ISO-Based Prompts 49

4.5.3 Improving Data Generation Through ISO Compliance 50

4.5.4 Limitation . 50

4.6 Finetuning . 51

4.7 Few-Shot Learning . 51

4.8 Evaluation . 52

4.8.1 Performance . 53

4.8.2 Slow Inference Time in Few-Shot Learning 53

4.9 Integrating . 53

4.10 The model in action in Betterfly . 54

4.11 Conclusion . 54

Conclusion and Perspectives 56

References 58

7

List of Figures

1.1 E-QUALITY ENGINEERING . 13

1.2 Betterfly . 14

1.3 Charts In Betterfly . 15

3.1 BetterChart Workflow . 32

3.2 Finetuning example . 35

3.3 Gpt 3.5 Loss . 36

3.4 Llama3 Loss . 36

3.5 User Input Interface - The control panel where users can manually input

their preferences for chart type, labels, and other properties. 41

3.6 Chart Generation - A dynamically generated chart rendered in the frontend

using the dynamicChart library, based on user preferences and linked data. 42

3.7 Configuration Saving - Example of the generated chart configuration saved

in the database . 42

3.8 Configuration Saving - Example of the generated chart configuration saved

in the web app . 43

4.1 Fewshot Learning Example . 52

4.2 Assistant icon . 54

4.3 Data generated . 54

8

List of Tables

3.1 Comparison of Model Performance . 37

4.1 Example of the available Dataset . 48

4.2 Model Evaluation: Accuracy and Inference Time 52

9

List of Tables List of Tables

List of abbreviations

Abréviation Signification

NL Natural language

LLM Large language model

IA Artificial Intelligence

ML Machine Learning

DL Deep learning

SQL Structured Query Language

API Application Programming Interface

ISO International Organization for Standardization

QHSE Quality, Health, Safety and Environment

Dataset Collection of related sets of information

Schema Instructions for creating a database

10

General Introduction

In an era where data-driven decision-making is paramount, the ability to efficiently vi-

sualize complex datasets has become an essential component of organizational success.

As businesses increasingly rely on data analytics to inform strategies and operational im-

provements, the demand for advanced tools that can streamline this process has surged.

E-QUALITY ENGINEERING, a leader in ISO certification, training, and consultancy

services, recognizes this critical need within the realm of Quality, Health, Safety, and En-

vironment (QHSE) management systems. Through its innovative digital platform, Bet-

terfly, the company has been at the forefront of transforming traditional QHSE processes

by integrating automation, real-time data processing, and comprehensive analytics.

Despite these advancements, a significant challenge persists in the domain of data

visualization within QHSE management: the manual generation of optimized charts that

accurately represent complex datasets. Existing solutions often require users to possess

specialized technical skills or involve cumbersome processes that impede real-time data

interpretation and decision-making. Moreover, while Large Language Models (LLMs) have

shown promise in automating chart generation, they present limitations such as privacy

concerns, reliance on static data inputs, and inefficiencies in processing time—particularly

when handling sensitive or continuously updating datasets.

The structure of this document will be as follows:

The first chapter will present the general context of the project, including an introduction

to E-Quality Engineering, The second chapter will be dedicated to the various technologies

adopted during the project. The third chapter will describe the process and the various

stages of the Betterchart project’s realization, detailing the results obtained, the project’s

progress, and suggestions for improvements. Finally The fourth chapters are dedicated on

my second project with E-Quality Engineering and the development of an Auto comple-

tion model

11

Chapter 1

Company introduction

1.1 Introduction

In this introductory chapter, we present E-QUALITY ENGINEERING, a leading provider

of ISO certification, training, and consultancy services. The organization is committed to

driving operational excellence and compliance across industries through the integration

of innovative digital solutions. We explore the company’s core values, services, and its

flagship product, Betterfly, which revolutionizes traditional QHSE (Quality, Health, Safety,

and Environment) management systems through automation and real-time data analytics.

The chapter further delves into the role of cutting-edge technologies, including AI and

machine learning, in enhancing the capabilities of the Betterfly platform, particularly in

the realm of automated data visualization. Through an examination of chart generation

methodologies and the challenges associated with LLM (large language model) implemen-

tations, we outline the project’s goal of creating an AI-driven solution to optimize chart

creation. This sets the stage for understanding how E-QUALITY ENGINEERING and

Betterfly aim to elevate QHSE standards, providing businesses with more effective and

efficient tools for compliance and performance monitoring.

1.2 E-QUALITY ENGINEERING

1.2.1 Overview

E-QUALITY ENGINEERING is an expert provider of training, implementation, and

certification services related to ISO standards, committed to propelling organizational

excellence and compliance across multiple sectors. The consultancy integrates innovative

digital solutions to modernize and enhance traditional QHSE management systems.

1.2.2 Services and Expertise

Offering a wide range of services from ISO certification assistance for standards like ISO

9001, ISO 14001, and ISO 45001 to bespoke training and consultancy, the firm adopts a

12

1.3. Solution QHSE Chapter 1. Company introduction

Figure 1.1: E-QUALITY ENGINEERING

digital-first approach. This method helps simplify the certification process, making ISO

standards more accessible and less daunting for businesses.

1.2.3 Experience and Impact

The enterprise’s proficiency is evidenced by its expansive portfolio, featuring successful

projects that have notably boosted clients’ operational standards and compliance across

diverse industries, demonstrating significant international reach and impact.

1.3 Solution QHSE

1.3.1 Definition and Importance

QHSE systems are integral for businesses to manage quality, health, safety, and environ-

mental performance effectively. These systems ensure compliance with legal and regulatory

requirements while fostering a safe, efficient, and sustainable operational environment.

1.3.2 Betterfly’s Role

Betterfly transforms QHSE management through its advanced digital platform, which

employs automation, real-time data processing, and comprehensive analytics to streamline

traditional QHSE processes, thereby reducing manual workloads and increasing accuracy.

1.4 Fundamental Values

1.4.1 Core Values

The operations of E-QUALITY ENGINEERING and Betterfly are rooted in core values

of integrity, innovation, and customer focus. These principles ensure a consistent, ethical

approach across all services and interactions.

13

1.5. Betterfly Chapter 1. Company introduction

1.4.2 Culture and Ethics

The commitment to ethical practices and continual improvement is central to the firm’s

operations, aiming to provide services that not only meet but exceed industry standards

and enhance client satisfaction.

1.5 Betterfly

Figure 1.2: Betterfly

1.5.1 Company Overview

Conceived to tackle inefficiencies in QHSE management, Betterfly offers a technologically

advanced solution that simplifies complex compliance processes and enhances organiza-

tional performance through digital automation.

1.5.2 Product and Services

The platform features automated process workflows, intuitive form management systems,

and sophisticated data visualization tools designed to support organizations in achieving

seamless compliance with ISO standards.

1.6 Data In Betterfly

1.6.1 Data Management

Betterfly prioritizes the security and integrity of data with rigorous controls and protocols

to ensure data is handled securely and efficiently, protecting against unauthorized access

and data breaches.

1.6.2 Use of Data

The platform leverages collected data to facilitate continuous improvements and strate-

gic decision-making. Advanced analytics and customized reporting capabilities provide

comprehensive insights that drive operational efficiency and strategic planning.

14

1.7. Technologies Used - Betterfly Chapter 1. Company introduction

1.7 Technologies Used - Betterfly

1.7.1 Tech Stack

Utilizing cutting-edge technologies like Node.js, React, and Docker, Betterfly is built for

scalability and robustness, accommodating the diverse and complex demands of QHSE

management.

1.7.2 Integration and Scalability

Designed for high adaptability and scalability, Betterfly integrates seamlessly with existing

systems and evolves with organizational growth, continually enhancing its capabilities and

service offerings.

1.8 Charts In Betterfly

1.8.1 Chart Types and Functions

Betterfly utilizes a variety of dynamic charts, including customizable line and bar charts,

to visualize complex QHSE data effectively. These visual tools are vital for monitoring

compliance, assessing performance trends, and facilitating clear communication of results.

1.8.2 Customization and Interaction

The platform’s charts offer extensive customization options and interactive features, al-

lowing users to modify visual data presentations according to specific requirements and

delve deeply into the data for meticulous analysis.

Figure 1.3: Charts In Betterfly

15

1.9. AI Assistants in Betterfly Chapter 1. Company introduction

1.9 AI Assistants in Betterfly

1.9.1 Role of AI

AI assistants are integral to Betterfly, enhancing functionality by automating data analysis,

chart generation, action planning, and custom report building. These AI systems use

machine learning algorithms to analyze historical data, predict trends, and suggest optimal

actions.

1.9.2 Adaptability and Customization

The AI-driven features of Betterfly ensure rapid adaptation to new automated processes

and easy customization of charts and reports, catering to the specific needs of different

QHSE domains. This adaptability is crucial for maintaining up-to-date and relevant tools

for users.

1.9.3 Future Scope

The future expansion of Betterfly includes broader management domains such as energy

management and ESG reporting. This progression aligns with global sustainability trends,

equipping organizations to meet the emerging demands of environmental and social gov-

ernance alongside traditional QHSE requirements.

1.10 Betterchart problem statement

As part of this final year project, the work required consisted of developing and imple-

menting an AI-driven solution for automatically generating optimized charts based on

data input. This mission included several key stages:

Data collection: Gather a diverse and representative dataset consisting of various types

of data along with examples of optimal chart representations. This included researching

existing datasets, as well as creating new, project-specific datasets to ensure the solution

addresses a wide range of use cases and data complexities.

Data preparation: Perform data cleaning and preprocessing to ensure the collected

data is suitable for training the AI model. This stage involved normalizing the data,

handling missing or inconsistent information, and converting it into a format that can be

used by machine learning algorithms.

Selection of the chart generation methodology: Evaluate different AI techniques and

approaches for automating chart generation. This step included researching various ma-

chine learning models.

Model selection: Identify and select the most appropriate AI model for generating data-

driven charts. This involved comparing different models based on criteria such as their

ability to understand context, generate accurate visualizations, resource requirements, and

processing speed, while taking into account the complexity and volume of the data.

16

1.10. Betterchart problem statement Chapter 1. Company introduction

Implementation and experimentation: Implement the selected AI model, training it

using the prepared data. This stage also involved testing the model’s performance, gen-

erating various types of charts, and conducting evaluations based on accuracy, relevance,

and visual appeal. Iterative adjustments were made to fine-tune the model and optimize

results.

Documentation and analysis of results: Document all stages of the project and analyze

the effectiveness of the generated charts. This included comparing the AI-generated charts

with manually created ones to assess quality, as well as formulating conclusions on the

success of the project. Recommendations were also provided for future improvements and

additional areas for research.

The work carried out in this project demonstrates the feasibility of using AI to au-

tomate the process of chart creation, offering a solution that saves time, improves chart

accuracy, and enhances decision-making by providing high-quality visual data representa-

tions.

1.10.1 Similar Applications

Large language models (LLMs) are widely used to generate charts, making the process of

data visualization easier and more efficient. Many advanced LLMs, like OpenAI’s GPT and

similar models, have the capability to understand natural language queries and produce

charts based on data or even descriptions. These models can generate a variety of charts,

like bar charts, line graphs, pie charts, and scatter plots. This approach simplifies chart

creation, especially for non-technical users, as it eliminates the need for manual coding

and understanding complex visualization libraries.

Several LLM-powered platforms, such as those integrated with B.I. tools, allow users

to interact with data through simple queries and commands, and the system generates

appropriate visualizations on the fly.

1.10.2 Limitations

While LLMs have impressive abilities when it comes to creating charts, there are some

clear limitations. A key issue is that users must manually provide the necessary data each

time they want a chart. This means the model doesn’t have real-time access to live or

automatically updated data, which can be a major downside in situations where data is

constantly evolving. Whenever the dataset changes, the user has to manually submit the

updated information to the model to produce a new chart.

Another drawback of using large language models (LLMs) for chart generation involves

privacy concerns, particularly when users need to input sensitive or proprietary data. To

generate charts, users must share their data with the LLM, which can raise potential data

security risks.

Moreover, the time it takes for LLMs to process and generate charts is another lim-

itation. LLMs are resource-intensive, so generating a chart from input data can take a

17

1.11. Solution Chapter 1. Company introduction

significant amount of time, especially with larger or more complex datasets. This issue

becomes more noticeable when using LLMs locally on machines with limited computing

power. As a result, real-time or near-real-time chart generation can become impractical,

especially in cases where frequent updates or immediate insights are necessary. For users

needing continuous, up-to-date visualizations, this delay can negatively impact the overall

efficiency of the process.

In situations where real-time data visualization is crucial, this inefficiency can be par-

ticularly problematic. For instance, in business settings where key metrics are constantly

being updated, users must continuously query the LLM with the latest data to ensure

that the charts reflect the most current information. Additionally, since LLMs rely on

static data inputs, they aren’t designed to support ongoing data analysis without con-

stant manual intervention. This limitation reduces their effectiveness in scenarios that

require continuous monitoring or automatic chart updates. Overcoming this issue would

require integrating LLMs with live data streams or automated refresh mechanisms, an

area still in need of further development.

1.11 Solution

A potential solution to the limitations posed by LLM-based chart generation is to use the

LLM to generate the configuration or template of the chart rather than directly producing

the chart itself. In this approach, the LLM takes natural language input from the user,

understands the data context, and outputs a detailed configuration file. This configura-

tion can then be used by a separate chart-rendering engine to generate the final visual

representation. By separating the chart design process from the data itself, this solution

ensures that the user retains full control over the data and can update it independently of

the LLM. Additionally, this approach minimizes privacy concerns, as the LLM only needs

to process the table schema, not the raw data itself, offering a more secure method for

handling sensitive information.

1.12 Approach

The approach for implementing this solution involves using the LLM to interpret the

user’s instructions and generate a chart configuration file that specifies the type of chart,

axis labels, legends, color schemes, and other visual elements. The LLM would analyze

the natural language query, determine the most appropriate chart type based on the

user’s intent, and then generate a code snippet or configuration template that a rendering

engine, such as Plotly, Matplotlib, or a similar tool, could use to visualize the data. This

approach also allows for greater flexibility: users can modify the configuration manually

if needed and rerun the chart with updated data without having to re-query the LLM. By

automating the chart configuration process while decoupling the LLM from direct data

handling, this method addresses privacy concerns, reduces inference time, and allows for

18

1.13. Conclusion Chapter 1. Company introduction

more dynamic updates to charts.

1.13 Conclusion

In conclusion, this chapter introduces E-QUALITY ENGINEERING and its commitment

to enhancing organizational excellence through innovative QHSE solutions. E-QUALITY

ENGINEERING stands out as a leader in ISO certification, training, and consultancy ser-

vices, leveraging cutting-edge digital technologies like the Betterfly platform to streamline

and modernize QHSE management. With a focus on automation, real-time analytics, and

data security, Betterfly enhances operational efficiency and compliance across industries.

The chapter also outlines the development of AI-driven solutions for automated chart

generation, which addresses critical challenges in data visualization, such as efficiency, ac-

curacy, and real-time updates. While current LLM-based models demonstrate significant

potential for generating insightful charts, limitations like privacy concerns and real-time

data access remain. However, proposed solutions, such as using LLMs to generate chart

configurations rather than full visualizations, provide a promising path forward. This

approach ensures better data control, improved privacy, and more dynamic, flexible visu-

alizations, paving the way for the future of automated QHSE management and compliance

reporting.

19

Chapter 2

Tools and Technologies used

2.1 Introduction

In this chapter, we will explore the various tools and technologies utilized in the develop-

ment of this project, with a focus on how they contributed to achieving efficient workflows,

powerful capabilities, and seamless collaboration. As the project involves complex machine

learning models, dynamic web interfaces, and backend systems, a broad range of software

and platforms was employed to address these needs.

We begin by examining Large Language Models (LLMs), the backbone of the AI-driven

solutions within the project. LLMs allow for natural language processing, which simplifies

user interactions with data and systems. The chapter will provide a detailed overview of

LLMs, discussing their definitions, types, and applications, as well as the state-of-the-art

models used in the project.

Next, we will delve into the programming languages and frameworks that played es-

sential roles in the development process, such as Python, React, Node.js, and SQL. Each

language and framework was selected for its unique strengths in handling tasks ranging

from machine learning to web development. We will also cover platforms like Hugging

Face, Google Colab, and cloud services such as Azure and AWS Amplify, which supported

model training and deployment.

The chapter will also review critical industrialization tools like Docker, Git, and

GitHub, which ensured that the project was efficiently managed, version-controlled, and

deployed across different environments.

By the end of this chapter, you will gain a comprehensive understanding of the tools and

technologies that powered the project, enabling its smooth execution and the development

of an advanced AI-driven solution.

2.2 LLMs

In today’s data-driven world, the ability to interact efficiently with complex systems is

becoming increasingly vital across various sectors. However, for many users, the technical

20

2.2. LLMs Chapter 2. Tools and Technologies used

complexity of these systems can act as a barrier. This is where large-scale language

models play a pivotal role, offering a way to simplify interactions through natural language

interfaces. These models provide users with the tools to engage with advanced systems

without requiring deep technical knowledge, thus broadening accessibility and enhancing

decision-making capabilities.

In this chapter, we will first provide a definition of LLMs, outlining their key charac-

teristics and how they work. Then we will examine the different types of LLMs available,

highlighting their unique features and applications. Next, we will discuss the state of the

art in LLM development, drawing on the latest research and advancements in the field.

We will also explore the practical applications of LLMs, showing how these models

are being applied in various industries. then focus on the current limitations and chal-

lenges associated with LLMs, identifying key areas that need improvement. Finally, we

will present some benchmarks and comparisons to evaluate their performance, leading

to the conclusion which summarizes key insights and future directions for this evolving

technology.

2.2.1 Definition of LLMs

Large Language Models (LLMs) are advanced machine learning models designed to un-

derstand and generate human language with a high degree of fluency and contextual

awareness. Built on neural networks, LLMs are trained on vast amounts of textual data,

allowing them to capture and model the complex relationships between words, phrases,

and concepts. The key innovation behind LLMs is the Transformer architecture, which

enables the model to process language in a parallelized manner, leading to greater effi-

ciency and scalability. This architecture allows LLMs to consider the context of words over

long passages of text, which is crucial for generating coherent and contextually relevant

responses. LLMs, such as OpenAI’s GPT, have revolutionized natural language process-

ing (NLP) by making it possible to automate tasks like text generation, summarization,

translation, and even code creation, with near-human-level accuracy.

2.2.2 Types of LLMs

LLMs can be categorized based on their size, training objectives, and the tasks they are

designed to perform. Some common types include general-purpose LLMs like GPT-3 or

BERT, which are trained on a broad range of text and can be fine-tuned for specific tasks,

and task-specific LLMs, which are optimized for particular applications such as question-

answering or machine translation. Another distinction is between monolingual LLMs,

which operate in a single language, and multilingual LLMs, which can handle multiple

languages simultaneously. Additionally, there are decoder-only models (such as GPT)

focused on generating text and encoder-decoder models (such as BERT and T5), which

are better suited for understanding and transforming text, making them ideal for tasks

like summarization or translation.

21

2.2. LLMs Chapter 2. Tools and Technologies used

2.2.3 State of the art

The current state of the art in LLMs is characterized by models that are larger, more

sophisticated, and capable of achieving remarkable results across a variety of natural

language tasks. Some of the leading models include OpenAI’s GPT-4, Google’s PaLM,

and Meta’s LLaMA. These models often consist of billions or even trillions of parameters,

allowing them to perform complex reasoning, generate high-quality text, and engage in

multi-turn conversations. Recent advances have also seen improvements in fine-tuning and

instruction-following capabilities, where models are trained not just on raw text but also

on specific instructions to improve their utility in real-world applications. Additionally,

fine-tuned variants like Codex (which specializes in code generation) have demonstrated

how LLMs can be adapted to niche domains. Innovations such as few-shot learning and

prompt engineering have further enhanced LLM performance, making them increasingly

versatile and practical in both research and industry.

2.2.4 Applications of LLMs

LLMs have a wide range of applications across various industries. In business, LLMs are

used to automate customer support through chatbots, generate content for marketing,

and assist in decision-making by providing data insights from natural language queries.

In healthcare, LLMs can summarize medical research, assist with diagnostics, and provide

patient care recommendations based on large datasets. They are also heavily used in

software development, where models like Codex can generate code snippets based on simple

language prompts, allowing developers to speed up the coding process. Furthermore, LLMs

are employed in fields like legal document analysis, translation services, and academic

research, where they help process and synthesize vast amounts of text into actionable

information.

2.2.5 Current limitations and challenges

Despite their advanced capabilities, LLMs face several significant limitations. One of

the primary challenges is their requirement for vast computational resources during both

training and inference, which makes deploying large models in real-time applications costly

and resource-intensive. Moreover, LLMs lack real-time adaptability; they cannot access

or update with live data, which means their output is based on the static data they were

trained on. Privacy is another key concern, as many LLMs require access to sensitive

data to generate relevant responses, raising security issues, especially when proprietary

or personal information is involved. Additionally, hallucination remains a problem, where

models generate factually incorrect or nonsensical text with confidence. Lastly, LLMs can

sometimes struggle with understanding highly specialized or domain-specific information

unless explicitly fine-tuned for that purpose.

22

2.3. Languages Chapter 2. Tools and Technologies used

2.2.6 Some benchmarks and comparisons

To measure the effectiveness and performance of LLMs, various benchmarks are used

across different natural language tasks. For instance, models are tested on datasets like

SuperGLUE, which evaluates understanding across a wide range of tasks such as question-

answering, reading comprehension, and logical inference. SQuAD (Stanford Question An-

swering Dataset) is commonly used to benchmark models for question-answering accuracy.

Additionally, coding models like OpenAI’s Codex are compared using benchmarks such as

HumanEval, which assesses the accuracy of generated code based on function descriptions.

When comparing models, factors like parameter count, training dataset size, and inference

speed are also critical. For example, GPT-4 has shown superior performance on multi-turn

dialogue and creative text generation, while BERT models excel in tasks requiring deeper

text understanding, such as text classification and sentiment analysis.

2.3 Languages

2.3.1 Python

Python is a versatile and widely-used programming language known for its simplicity and

readability. It is commonly used in data science, machine learning, and AI due to its rich

ecosystem of libraries like NumPy, Pandas, TensorFlow, and PyTorch. In this project,

Python is essential for implementing machine learning models and managing data tasks.

2.3.2 React

React is a JavaScript library for building dynamic, interactive user interfaces, mainly

for web applications. It allows developers to create reusable components and efficiently

manage state, enabling responsive and user-friendly interfaces. In this project, React is

used to build the front-end where users interact with data and visualize AI-generated

charts. Its flexibility and speed ensure a seamless user experience, with charts updating

and rendering smoothly based on user input.

2.3.3 NodeJs

Node.js is a server-side JavaScript runtime built on Chrome’s V8 engine, commonly used

for building scalable web applications. In this project, Node.js acts as the backend, han-

dling server requests and facilitating interaction between the front-end (React) and the

23

2.4. Platforms Chapter 2. Tools and Technologies used

AI-driven model on the server. It also manages API calls, processes user data, and passes

configurations to the chart generation libraries.

2.3.4 SQL

SQL is the standard language for querying and managing relational databases. In this

project, it enables efficient retrieval and manipulation of stored data. SQL is used to

extract data from databases, which is then utilized by the AI model or for generating

visualizations. Writing dynamic and complex SQL queries ensures that the necessary

data is available for processing, analysis, and visualization.

2.3.5 GraphQL

GraphQL is a query language for APIs that allows clients to request specific data, reducing

API calls and improving performance. In this project, GraphQL enables efficient data

retrieval from the server, especially when dealing with large datasets. Its flexibility and

ability to query nested relationships make it ideal for managing and structuring data

exchanges between the front-end and backend, particularly for complex data visualizations.

2.4 Platforms

2.4.1 Hugginface

Hugging Face is a leading platform for NLP and machine learning models, offering pre-

trained models and tools for fine-tuning. In this project, Hugging Face’s model hub is

utilized to access advanced language models like Llama The platform also provides tools

to fine-tune models, ensuring they are optimized for the project’s specific requirements.

24

2.5. Frameworks and Libraries Chapter 2. Tools and Technologies used

2.4.2 Google Colab

Google Colab is a cloud-based platform that provides a free environment for running

Jupyter notebooks, offering access to GPUs and TPUs without complex setups. In this

project, Colab is used during the development and training of AI models, enabling efficient

experimentation with various configurations and datasets. Its integration with popular

machine learning libraries and ease of collaboration make it essential for rapid prototyping

and testing.

2.4.3 Azure

Microsoft Azure is a cloud computing platform offering services such as virtual machines,

databases, and machine learning environments. In this project, Azure is used to host back-

end services, run AI models, and store datasets. Its scalability and robust infrastructure

enable efficient large-scale data processing and model inference, ensuring reliable, secure,

and high-performance service for end-users.

2.4.4 AWS Amplify

AWS Amplify is a suite of tools and services from Amazon Web Services that streamlines

the development and deployment of full-stack applications. In this project, AWS Amplify

is used to deploy the front-end web application and manage backend services like authen-

tication and data storage. Its integration with other AWS services, such as S3 for storage

and Lambda for serverless functions, ensures a smooth workflow for handling data and

managing user interactions with the visualization tool.

2.5 Frameworks and Libraries

2.5.1 ChartJS

Chart.js is a popular open-source library used for creating responsive, interactive, and

customizable charts and graphs in web applications. It supports various chart types such

25

2.5. Frameworks and Libraries Chapter 2. Tools and Technologies used

as bar, line, pie, and scatter charts. In our project, Chart.js is utilized to render the charts

based on the configurations generated by the model, providing users with visual insights

from their data.

2.5.2 Datasets

The Datasets library is a versatile tool for accessing and managing large datasets in various

formats, widely used in machine learning tasks. In this project, Datasets is used to organize

and process datasets used for training and validating the AI model.

2.5.3 Transformers

Transformers is a library developed by Hugging Face that provides pre-trained models and

utilities for natural language processing tasks. It enables efficient model fine-tuning and

deployment. In our project, Transformers is used to power the model that interprets user

inputs and generates corresponding chart configurations based on data schema.

2.5.4 Unsloth

Unsloth is a Python utility designed to optimize model loading times and manage large

models more efficiently. In this project, Unsloth is used to streamline model loading and

improve its performance.

2.5.5 Torch

Torch (PyTorch) is a deep learning framework widely used for building and training ma-

chine learning models. PyTorch’s dynamic computation graph and flexibility make it ideal

for research and production. In our project, Torch is used to implement and fine-tune the

machine learning models.

2.5.6 Accelerate

Accelerate is a library from Hugging Face designed to simplify distributed training across

multiple devices such as CPUs, GPUs, and TPUs. In our project, Accelerate was lever-

aged during the training phase to speed up model training on different hardware setups,

reducing training time significantly.

2.5.7 Scipy

SciPy is an open-source Python library used for scientific and technical computing. It

provides tools for optimization, integration, interpolation, and more. In this project,

SciPy supports data processing tasks and assists in handling mathematical operations

required during the model training process.

26

2.6. Communications and meeting tools Chapter 2. Tools and Technologies used

2.5.8 Xformers

Xformers is a library for memory-efficient Transformers, designed to improve performance

and reduce memory usage when dealing with large models. In our project, Xformers was

employed to optimize the Transformer model, ensuring that chart configurations were

generated efficiently without overwhelming system resources.

2.5.9 Safetensors

Safetensors is a tool that provides a safer and more efficient format for storing and loading

machine learning model weights. In this project, Safetensors ensures that the model

weights are securely stored and quickly accessible during runtime, improving the overall

safety and performance of the system.

2.5.10 peft

PEFT (Parameter-Efficient Fine-Tuning) is a library that enables fine-tuning models with

fewer parameters, saving computation time and resources. In our project, PEFT was

used to fine-tune the Transformer model responsible for generating chart configurations,

making it more efficient and adaptable.

2.5.11 sklearn

Scikit-learn is a widely-used library for machine learning, providing simple and efficient

tools for data analysis and model building. In our project, Scikit-learn was used for pre-

processing data, evaluating the model’s performance, and applying statistical techniques

during the training process.

2.5.12 PyPDF2

PyPDF2 is a library for working with PDF files in Python. It enables PDF manipulation

tasks such as splitting, merging, and extracting text. In our project, PyPDF2 was utilized

to extract and organize data from PDF documents, such as ISO standards, which were

later used to train the auto-complete models

2.6 Communications and meeting tools

2.6.1 Google Meet

Google Meet is a widely used video conferencing platform that supports remote team com-

munication and collaboration with features like screen sharing, live captions, and meeting

recording. In this project, Google Meet was utilized for team meetings, client interactions,

and remote collaboration. Its integration with Google Workspace made scheduling and

managing meetings efficient, ensuring seamless communication throughout the project.

27

2.7. Industrialization tools Chapter 2. Tools and Technologies used

2.6.2 Notion

Notion is an all-in-one productivity tool that integrates note-taking, task management,

databases, and collaboration features. In this project, Notion served as the central hub for

project management, documentation, and teamwork. The team used it to organize meeting

notes, assign tasks, track progress, and maintain project documentation, while enabling

the creation of a structured and collaborative workspace, enhancing communication and

collaboration throughout the project.

2.7 Industrialization tools

2.7.1 Docker

Docker is an open-source platform that automates the deployment of applications in

lightweight, portable containers, bundling the application and its dependencies to ensure

consistent performance across different environments. In this project, Docker was used

to containerize the application, ensuring a uniform configuration across all team members

and deployment environments. This reduced compatibility issues and helped with the

development, testing, and deployment processes.

2.7.2 Git

Git is a distributed version control system commonly used for tracking changes in source

code during development. It enables multiple developers to collaborate by managing

branches, handling merges, and maintaining a detailed history of changes. In this project,

Git was used to manage the source code, track modifications, and facilitate team collab-

oration. Its versioning ensured smooth coordination and provided rollback capabilities

when needed.

28

2.8. Conclusion Chapter 2. Tools and Technologies used

2.7.3 Github

GitHub is a web-based platform built on Git that hosts repositories and offers collaboration

tools such as pull requests, code reviews, and issue tracking. In this project, GitHub was

used to host the codebase and manage team contributions. It served as a central hub

for storing code, tracking issues, and facilitating discussions via GitHub Issues and Pull

Requests, ensuring a smooth and organized development workflow.

2.8 Conclusion

In conclusion, this project leveraged a comprehensive suite of tools, technologies, and

languages to ensure successful execution and collaboration. The programming languages

used, including Python, React, Node.js, SQL, and GraphQL, formed the backbone of

the development process. Python’s versatility in handling machine learning and data

visualization, combined with React’s capability to build dynamic front-end interfaces and

Node.js managing the backend, enabled the team to create a robust and efficient system.

SQL and GraphQL played pivotal roles in managing and querying data, ensuring seamless

data communication between the application layers.

In terms of communication and collaboration, tools such as Google Meet and Notion

facilitated consistent team interactions and effective project management. Google Meet

allowed the team to hold regular meetings, ensuring that everyone stayed aligned on

project goals and deadlines. Notion acted as the central repository for documentation, task

management, and team coordination, improving transparency and workflow efficiency.

Industrialization tools like Docker, Git, and GitHub ensured that the development

environment was stable and scalable. Docker was instrumental in containerizing the ap-

plication, making deployment across different environments uniform and straightforward.

Git and GitHub facilitated version control, allowing multiple team members to collaborate

effectively, manage code changes, and ensure that all work was tracked and versioned.

Additionally, platforms such as Hugging Face, Google Colab, Azure, and AWS Amplify

supported the model development and deployment processes. Hugging Face provided

access to state-of-the-art models, while Google Colab offered a flexible environment for

experimentation and model training. Azure and AWS Amplify were key in deploying

the backend services and ensuring the application’s scalability and security in a cloud

environment.

The combined use of these tools, languages, and platforms ensured that the project was

completed with high efficiency, collaboration, and innovation. Each tool played a crucial

29

2.8. Conclusion Chapter 2. Tools and Technologies used

role in addressing different challenges, from development and deployment to communi-

cation and coordination. Together, they contributed to the creation of a well-rounded,

functional system capable of delivering the intended AI-driven chart generation solution.

30

Chapter 3

BetterChart

3.1 Introduction

BetterChart aims to revolutionize the way users generate data visualizations by harnessing

the power of artificial intelligence. The goal of this project is to provide a solution that

allows users to create optimized, relevant, and visually appealing charts with minimal

effort. By leveraging AI to analyze the data and generate chart configurations, BetterChart

simplifies the process, making data visualization more accessible to users with varying

levels of technical expertise. The result is a tool that not only saves time but also enhances

the quality of insights derived from data by generating the most appropriate chart type

for the context.

3.2 Approach followed

The development of BetterChart was an extensive process that focused on two critical

components to enhance the overall user experience and functionality.

The first key aspect involved implementing the DynamicChart system on the front-end,

primarily utilizing React. This implementation was not only focused on providing a seam-

less and responsive user experience but also on ensuring that the system could efficiently

connect to the back-end database. This connection was achieved using Node.js. The Dy-

namicChart system is designed to dynamically receive outputs from a language learning

model (LLM) and then translate that information into a clear, interactive visualization

using Chart.js, a robust library for creating versatile and customizable charts. The entire

process ensures that the users can easily visualize complex data through automatically

generated charts, enhancing comprehension and decision-making processes.

The second essential component was focused on the training of the underlying model

that powers BetterChart. This model was carefully designed and trained to understand

and NL text inputs and then generate the corresponding chart configuration. This com-

plex task involved fine-tuning the model to ensure it could accurately interpret varied

user inputs, ranging from simple requests to more complex data-driven queries, and con-

31

3.3. Setting up BetterChart - (DynamicChartJS) Chapter 3. BetterChart

vert them into structured formats that could be seamlessly integrated into the Chart.js

visual output. This allows users to effortlessly translate natural language descriptions

into precise, visually engaging data representations without needing extensive technical

expertise.

Together, these two components – the front-end implementation using React and

Node.js, and the sophisticated model training for NL to chart configuration generation

– form the backbone of the BetterChart system, making it an innovative and user-friendly

tool for data visualization.

3.2.1 System Architechture overview

Figure 3.1: BetterChart Workflow

3.3 Setting up BetterChart - (DynamicChartJS)

Before diving into the AI phase of the project, we dedicated a significant portion of the

internship duration to carefully designing and developing an improvement on the ChartJS

Library capable of understanding and generating chart configurations. This deliberate

approach allowed us to gain deep insights into the structure and types of configuration

data that would need to be generated by the system.

As a result of this process, we successfully built a control panel that enables users

to create charts by selecting options manually, providing them with full control over the

customization process. The time invested in this system’s development ensured that we

thoroughly understood the configuration requirements, ultimately allowing us to refine

and streamline the data generation process.

This groundwork has proven invaluable, as it not only prepared us for the AI phase

of the project but also gave the users of the application to be able to create charts even

without the use of AI. By establishing this solid foundation, we ensured that the system

32

3.4. Training Chapter 3. BetterChart

is both user-friendly and robust, capable of handling complex chart customization needs

with ease.

3.4 Training

The training phase played a pivotal role in transitioning our system from manual config-

uration to an AI-driven solution. During this phase, we focused on teaching the model to

understand and replicate the logic behind chart configurations based on user inputs. By

utilizing a carefully curated dataset of chart examples and configurations, we trained the

model to generate accurate and customizable chart setups.

3.4.1 Data Collection

The data collection process involved manually gathering and generating the necessary

configurations from previous chart examples and online sources. Additionally, a significant

portion of the dataset was created manually to ensure diversity and comprehensiveness.

The data was structured in a specific format to capture the relationship between user

inputs, the corresponding table schema, and the resulting chart configurations.

For each entry in the dataset, the first input represented the user input, while the

second input defined the table schema, outlining the relevant columns for the chart. The

output consisted of the full chart configuration. Below is an example of how the data was

formatted:

• Input: Context - ”Distribution des utilisateurs par Login”

• Table Schema: ”[’id’, ’Login’, ’Prenom’, ’Nom’, ’Email’, ’Langue’, ’Processus’,

’isAdmin’, ’createdAt’, ’updatedAt’, ’userRoleId’, ’version’, ’lastChangedAt’, ’deleted’]”

• Output: X: ”Login”, chartType: ”doughnut”, isStacked: false, isFiltered: false,

formula: none

This structured approach to data collection provided a strong foundation for training

the model, ensuring it could handle a wide range of chart configurations based on various

user inputs and table schemas.

3.4.2 Data Augmentation

To enhance the diversity and robustness of the dataset, we employed several data augmen-

tation techniques. One key method was translating the user input into different languages,

which allowed the model to handle a more diverse set of inputs and adapt to various lin-

guistic contexts. Additionally, we applied reformulation techniques to rephrase user inputs

while maintaining the same underlying intent.

By introducing these variations, we significantly increased the size and variety of the

dataset, enabling the model to generalize better across different input formats and user

33

3.5. Prompt Engineering Chapter 3. BetterChart

expressions. These augmentation techniques were crucial for ensuring that the system can

process a wide range of user inputs and generate accurate chart configurations in different

scenarios.

3.4.3 Data processing

Once the data was collected and augmented, the next crucial step was data processing.

This involved cleaning and standardizing the dataset to ensure consistency and eliminate

any irregularities. All user inputs, table schemas, and output configurations were carefully

formatted to adhere to a uniform structure, facilitating efficient training of the model.

We also handled missing or incomplete data by applying preprocessing techniques

such as filling missing values, filtering out irrelevant fields, and ensuring that all necessary

components (inputs, schemas, and outputs) were present in each data entry. This step

ensured that the model would be trained on high-quality, well-structured data, optimizing

its performance and reducing errors during the configuration generation process.

Finally, the processed data was divided into training and validation sets, which enabled

us to evaluate the model’s performance and fine-tune it throughout the training phase.

3.4.4 Choice of model

LLaMA 3: This model is known for its efficiency and ability to handle tasks with minimal

computational resources, making it a strong candidate our chart generation task. Its

architecture is designed to be lightweight while still providing deep insights from a variety

of contexts, especially in structured data environments.

GPT-3.5: With its extensive training on a broader dataset, GPT-3.5 excels at language

understanding and can generate more contextually aware summaries. It can infer complex

relationships within the data and articulate them in a natural, coherent manner, making

it ideal for graph synthesis tasks.

3.5 Prompt Engineering

Prompt engineering is a technique used to guide and enhance the performance of large

language models (LLMs) like GPT by carefully designing the input prompts. Rather

than altering the underlying model, this method focuses on crafting precise instructions

or questions that direct the model to generate the desired output more effectively.

In our project, prompt engineering was employed to ensure that the LLM consistently

returned outputs in the specific format we required, allowing us to tailor the responses to

fit the exact needs of our system. This approach optimized the model’s ability to generate

accurate chart configurations based on user input.

34

3.6. Finetuning Chapter 3. BetterChart

3.6 Finetuning

3.6.1 What is Fine-tuning?

Fine-tuning is a key technique in AI where a pre-trained model is adapted to perform

a specific task. Instead of training a model from scratch, which requires a lot of data

and time, fine-tuning allows us to take an existing model that has already learned general

patterns and adjust it for a more focused application.

For example, a language model trained on a large general dataset can be fine-tuned

to better understand legal or medical documents. This process saves time and resources

while improving the model’s performance on a specific task.

Figure 3.2: Finetuning example

35

3.7. Results Chapter 3. BetterChart

3.7 Results

Figure 3.3: Gpt 3.5 Loss

Figure 3.4: Llama3 Loss

3.8 Evaluation

To evaluate the performance of our fine-tuned models, we adopted a human feedback-

based approach, which allowed us to obtain a qualitative and accurate assessment of the

results. We established a rigorous evaluation process that consisted of the following steps:

36

3.9. Result interpretation Chapter 3. BetterChart

Preparation of a varied set of database schemas

Preparation of a diverse set of Titles from already existing charts.

Generation of Chart configuration by each model in response to these questions.

Manual evaluation of the accuracy of the obtained results.

This method enabled us to effectively compare the performance of the different models.

Model Speed Accuracy of chart generated

LLaMA 3 7B finetuned Fast Average

GPT-3.5 finetuned Moderate High

Table 3.1: Comparison of Model Performance

This comparative analysis provided valuable insights into the strengths and weaknesses

of each model, helping us identify the most suitable model for automating the generation

of chart configurations.

3.9 Result interpretation

The model’s output consists of complete chart configurations based on user inputs, such

as chart type, axes labels, and additional properties like stacking or filtering. These

configurations are generated to fit seamlessly into our charting library, ensuring that the

charts reflect the user’s preferences.

3.9.1 Chart Type

This refers to the type of chart generated by the AI model. Options can include various

types such as pie charts, bar charts, doughnut charts, line charts, and others. The appro-

priate chart type is selected based on the nature of the data and how it is best represented

visually.

3.9.2 X

This parameter defines the first label, which is used to split the data. It represents the

primary axis or category by which the data is separated in the chart. For example, in a

bar chart comparing sales across different regions, the ”X” axis could be the regions.

3.9.3 Y

This parameter defines the second label used to split the data. It is typically used for

numerical values that are plotted against the categories on the X-axis. In the sales example,

the ”Y” axis could represent the sales figures for each region.

37

3.9. Result interpretation Chapter 3. BetterChart

3.9.4 X Group

This field represents how the first label (X) is grouped. It allows the AI model to aggregate

data into larger categories or clusters, offering a clearer view of trends or patterns. For

example, the data on the X-axis could be grouped by year or by trimester.

3.9.5 Y Group

Similar to X Group, this field groups the Y-axis data, allowing for aggregated calculations

or summaries, such as total sales for each region or average ratings for a product category.

3.9.6 isStacked

This setting controls whether a bar chart should be stacked or not. A stacked bar chart

layers data categories on top of one another in a single bar, which helps in comparing

part-to-whole relationships.

3.9.7 isFiltered

This option controls whether the data should be filtered before being displayed. Filtering

allows users to focus on specific subsets of the data, such as showing only data from a

certain year or excluding outliers.

3.9.8 Filter Key

The filter key defines the specific attribute or field used for filtering the data. For instance,

if the dataset includes multiple regions, a filter key like ”Region” would allow the chart to

display data from a particular region only.

3.9.9 Filter Value

This value determines the specific condition applied to the filter key. For example, if the

filter key is ”Region,” the filter value could be ”North America” to display data only from

that region.

3.9.10 Filter Operator

The filter operator defines how the data is filtered. Common operators include ”equal to,”

”less than,” ”greater than,” or other comparison operations that narrow down the data

set based on the filter key and value.

3.9.11 Formula

This field defines how the data is expressed within the chart. It can display percentages,

raw values, or more complex mathematical expressions, such as sum, count, or averages.

38

3.10. Similarity check Chapter 3. BetterChart

This feature allows for more sophisticated data presentations, especially in cases where

mathematical aggregation or manipulation is needed.

3.9.12 Colors

The AI model is also capable of automatically assigning colors to different labels within the

chart. This ensures that each category or data point is easily distinguishable, enhancing

the readability and visual appeal of the chart.

3.10 Similarity check

In some cases, the results generated by the AI model do not perfectly align with the

expected data schema. To address this issue, I implemented a similarity check that returns

a ”fuzzy set” to help identify close matches between the generated results and the required

schema.

The similarity check uses fuzzy matching techniques to compare the generated data

with the predefined schema. Instead of requiring an exact match, the system calculates

the degree of similarity between the two sets of data. This approach is particularly useful

when there are minor discrepancies in formatting, labeling, or structure. By implementing

this similarity check, the system can:

* Improve Flexibility: Handle minor differences in data schema and still return relevant

results.

* Enhance Accuracy: Identify the closest possible matches, even when exact matches are

not available.

* Optimize Workflow: Reduce the need for manual adjustments, as the fuzzy set provides

suggestions that are nearly identical to the expected schema.

The similarity check is a valuable addition that ensures more robust and adaptable output,

even when data mismatches occur.

3.11 Graph synthese

3.11.1 Introduction

In this section, we discuss the implementation of a base model, without fine-tuning, capable

of generating syntheses based on the data returned from the charts. Leveraging powerful

models like LLaMA 3 and GPT-4o, this approach uses pre-trained models to interpret

data and provide concise summaries or insights without the need for additional training

on task-specific data.

3.11.2 Models

Both LLaMA 3 and GPT-4o are large language models with strong capabilities in natural

language understanding and generation. They have been pre-trained on diverse datasets,

39

3.12. Integrating Chapter 3. BetterChart

enabling them to generate meaningful interpretations based on a wide variety of inputs,

including the graphical data returned from the charts. By tapping into their vast gen-

eral knowledge, these models can generate text syntheses that explain trends, highlight

significant data points, and summarize key findings from complex visualizations.

3.11.3 Implementation Approach

The process starts by feeding the raw chart data into the model, along with a prompt

requesting a synthesis. For example, the prompt might be structured as: ”Generate a

synthesis of the key insights from the pie chart with the following data ...”

Although the base models are not fine-tuned for specific datasets, their large-scale

training makes them adaptable. They are capable of understanding numeric and categori-

cal data, as well as making inferences about the relationships between them. For example,

they can detect correlations, spot anomalies, or explain proportional changes, even when

the chart data is novel or specific to a particular domain.

3.12 Integrating

The model is hosted in a cloud-based environment, providing scalability and availability for

real-time interactions. To facilitate communication between the model and the frontend,

an API was created, allowing the frontend to send user inputs and the associated data

schema to the model.

The model processes the input and generates the appropriate chart configuration,

which is then returned to the frontend. The frontend uses the dynamicChart library to

render the chart based on the configuration, allowing users to instantly visualize the results

tailored to their specifications.

Additionally, the generated chart configuration is saved in a dedicated table within a

database. This ensures that each chart, along with its configuration, is stored for future

reference. Since the configuration is dynamic, it is linked to live data, meaning that

even if the underlying data changes, the saved configuration remains valid. The chart

will automatically update to reflect new data without the need to re-engage the LLM,

streamlining the process and keeping the charts up-to-date with minimal intervention.

3.13 The Model in Action in Betterfly

In this section, we showcase how the AI-powered chart generation model is integrated

into the Betterfly application, providing users with an intuitive experience for creating

dynamic charts. Below are some screenshots illustrating the user interface, the workflow

of generating charts, and how the model interacts with the system.

40

3.13. The Model in Action in Betterfly Chapter 3. BetterChart

Figure 3.5: User Input Interface - The control panel where users can manually input their
preferences for chart type, labels, and other properties.

41

3.13. The Model in Action in Betterfly Chapter 3. BetterChart

Figure 3.6: Chart Generation - A dynamically generated chart rendered in the frontend
using the dynamicChart library, based on user preferences and linked data.

Figure 3.7: Configuration Saving - Example of the generated chart configuration saved in
the database

42

3.13. The Model in Action in Betterfly Chapter 3. BetterChart

Figure 3.8: Configuration Saving - Example of the generated chart configuration saved in
the web app

43

3.14. Conclusion Chapter 3. BetterChart

3.14 Conclusion

In conclusion, the BetterChart project represents a significant advancement in automated

data visualization, combining AI-powered chart generation with a user-friendly interface.

By utilizing advanced natural language processing (NLP) models, such as LLaMA 3 and

GPT-3.5, BetterChart allows users to effortlessly generate optimized chart configurations

from simple natural language inputs. The system’s ability to interpret user inputs and

automatically generate visually appealing and contextually relevant charts makes it an

innovative tool for both technical and non-technical users.

The project’s development approach, which included the implementation of a dynamic

front-end using React and Chart.js, combined with sophisticated back-end support from

Node.js, ensures seamless data visualization and efficient interaction with AI models. The

training and fine-tuning of models for NL input to chart configuration generation further

enhance the system’s capability to interpret complex user requests and deliver accurate

visual representations.

Furthermore, BetterChart addresses key challenges in data visualization, such as pri-

vacy concerns and real-time data handling, by decoupling the AI model from direct data

manipulation. The integration of a similarity check system and data augmentation tech-

niques strengthens the tool’s flexibility, allowing it to handle diverse input formats and

adapt to various contexts.

Ultimately, BetterChart not only streamlines the chart creation process but also en-

hances decision-making through high-quality data visualizations, providing an invaluable

asset for businesses and individuals alike in a range of domains.

44

Chapter 4

AI Assistant

4.1 Introduction

The AI Assistant project is designed to enhance the user experience by intelligently gen-

erating form fields based on already typed-out inputs. In the context of Digitalisation

QSE (Quality, Safety, Environment), the assistant aims to streamline the form completion

process, reducing manual entry and improving efficiency. This system functions similarly

to auto-complete, but it goes beyond simple text suggestions by dynamically predicting

and generating entire form fields that align with user input and the specific context of the

form.

Forms within the QSE domain are often complex, requiring extensive details on pro-

cedures, compliance, and safety measures. These forms may include interdependent fields

where the completion of one section determines the content of subsequent sections. The

AI Assistant tackles this challenge by learning from previously entered data, recognizing

patterns, and generating relevant fields in real-time.

Moreover, since the primary purpose of the system is to improve the user experience,

it also offers the ability to regenerate and reformulate already typed-out form fields. This

feature allows users to update or adjust existing inputs effortlessly, ensuring flexibility and

adaptability when new information is available or changes need to be made. By enabling

both dynamic generation and reformulation of fields, the AI Assistant provides a seamless,

user-centric approach to form completion.

The assistant is powered by a machine learning model trained to understand the re-

lationships between different fields in a form, allowing it to generate accurate and con-

textually appropriate suggestions. By automating this process, the AI Assistant aims to

reduce human error, save time, and provide a more intuitive experience when interacting

with complex forms.

This chapter will explore the architecture and design of the AI Assistant, how it in-

tegrates with existing systems, and the techniques used to train and deploy the model

effectively.

45

4.2. Similar Applications Chapter 4. AI Assistant

4.2 Similar Applications

The concept of generating form fields based on already typed content has been explored

in several domains, with a variety of applications aimed at improving user experience and

productivity. Here are a few notable examples:

4.2.1 Google Forms and Auto-complete Features

Google Forms offers basic auto-complete functionalities, such as auto-suggestions for an-

swers in multiple-choice questions or drop-down fields. Although limited in its contextual

understanding, it assists users by providing quick selections based on previous inputs.

However, it doesn’t dynamically generate new fields based on the context of previously

filled data, highlighting a gap that our AI-driven solution seeks to address.

4.2.2 Intelligent CRMs

Customer Relationship Management (CRM) systems like Salesforce and HubSpot have

started integrating AI-based tools to help auto-fill and suggest data in fields, such as

customer details or project information. These tools often rely on existing databases and

previous interactions to predict and auto-complete fields, enhancing the user’s ability to

manage clients efficiently.

4.2.3 Medical Record Systems

In healthcare, electronic medical record (EMR) systems have begun to utilize predic-

tive text and auto-complete functionalities to assist healthcare professionals in filling out

patient information. These systems analyze past data and current inputs to generate

suggestions.

4.3 Limitations

Despite the advancements in similar applications, there are several limitations we must

consider for our AI assistant project.

4.3.1 Domain-Specific Challenges

The existing models we discussed, such as those used in CRM, healthcare, and e-commerce,

are tailored to specific domains, providing targeted solutions for their respective fields.

While these models demonstrate the potential of auto-complete functionalities, they do

not directly align with the needs of our domain. The unique requirements and structure of

forms, which often involve compliance-related fields, safety checks, and detailed procedural

documentation, make it necessary to develop a customized solution.

46

4.4. Training Chapter 4. AI Assistant

4.3.2 Lack of Training Data

One of the primary limitations we face is the lack of domain-specific training data. Exist-

ing datasets from other domains, like e-commerce or healthcare, are not directly applicable

to the structure and terminology used in our processes. To train a robust model, we need

comprehensive datasets that reflect real-world forms, user behaviors, and field dependen-

cies. The scarcity of such data hinders the initial performance of the model.

4.4 Training

The training process for the AI Assistant is crucial to ensure that the model can accurately

predict and generate form fields based on user input. The model is trained to understand

the relationships between different fields in QHSE forms, as well as the context of each

input. This enables the assistant to dynamically generate and reformulate fields, making

form completion more intuitive and efficient. In this section, we will discuss the data

used for training, the model architecture, and the strategies employed to optimize its

performance.

4.4.1 Data Collection

Data collection for the AI Assistant primarily relies on datasets sourced from Betterfly’s

existing data, specifically from QHSE forms and related documentation. These datasets

include real-world examples of form fields, user inputs, and their interdependencies, which

are essential for training the model to understand the context and relationships between

different form fields.

However, a significant limitation in the data collection process is the scarcity of domain-

specific data. While Betterfly’s datasets provide a valuable foundation, the lack of ex-

tensive, diverse examples within the Digitalisation QHSE domain poses a challenge for

training a robust model.

For example in order to generate the ”Analyse des causes,” the dataset requires the

”Description de Non-conformité” as input. This description provides the context necessary

for the model to understand the source of the problem and produce the relevant root cause

analysis using the 5M methodology.

Similarly, to generate the ”Action corrective,” the model uses the ”Analyse des causes”

as the input. The causes identified guide the model in proposing appropriate corrective

actions to address the non-conformity.

The structured relationship between these fields is critical for training the model to

produce contextually accurate outputs. Since the dataset follows this natural progression

from identifying the problem, analyzing the root causes, and proposing corrective mea-

sures, it serves as an ideal foundation for training an AI system to automate the process

of generating root cause analyses and corrective actions.

47

4.4. Training Chapter 4. AI Assistant

Description de Non-
conformité

Analyse des causes
(Méthode des 5M)

Action corrective
proposée

Absence de documentation
adéquate pour le suivi des in-
spections internes : Lors d’un
audit interne, il est constaté
que les rapports d’inspection
ne sont pas systématiquement
documentés, ce qui rend diffi-
cile la traçabilité des actions
correctives.

Matériel : Absence de logi-
ciels adaptés pour la gestion
documentaire.
Méthode : Absence de
procédure claire pour la doc-
umentation des inspections.
Main-d’œuvre : Manque de
formation des employés sur
l’importance de la documen-
tation.
Milieu : Environnement de
travail sous pression, peu de
temps pour la documentation.
Management : Manque de
surveillance de la part des re-
sponsables sur la documenta-
tion des inspections.

Mettre en place un logi-
ciel de gestion docu-
mentaire et former les
employés à son utilisa-
tion pour garantir que
les inspections soient
systématiquement doc-
umentées.

Table 4.1: Example of the available Dataset

4.4.2 Data processing

The initial data used for training was sourced from the Betterfly database, containing raw

data from various QHSE forms. This data was then transformed into a structured format

suitable for model training. Specifically, we focused on extracting the input and output

fields from the columns that were most relevant to form completion tasks.

In this process, relationships between the columns were identified and mapped to create

a coherent dataset where columns are connected, similar to how one would construct a

graph. These connections reflect the dependencies between different form fields, allowing

the model to learn the underlying structure of the forms and how changes in one field can

influence the content of another.

Once this data was organized, further preprocessing steps included cleaning, normal-

izing, and formatting the inputs to ensure consistency across the dataset. This structured

and processed data serves as the foundation for training the AI Assistant to understand

form field generation and inter-field relationships.

4.4.3 Choice of Model

For this project, we are focused on exploring both paid, high-accuracy models and open-

source alternatives to strike a balance between performance and cost-effectiveness.

One of the primary options we are considering is GPT, a paid, high-accuracy model

known for its exceptional ability to generate coherent and contextually accurate text.

GPT’s robust performance makes it ideal for complex tasks like form field generation,

48

4.5. Prompt Engineering Chapter 4. AI Assistant

where precision and contextual understanding are crucial. This model offers superior

accuracy and adaptability, making it a strong candidate for handling the nuances of QHSE

forms.

On the other hand, we are also exploring open-source alternatives like LLaMA3, a

powerful and flexible model that, while not as polished as GPT, offers significant potential

for customization and scalability. LLaMA3’s open-source nature provides the opportunity

to fine-tune the model for our specific domain, offering a cost-effective solution without

compromising too much on accuracy.

By evaluating both GPT and LLaMA3, we aim to determine the best fit for our AI

Assistant, considering factors such as accuracy, cost, scalability, and adaptability to the

Digitalisation QSE domain. This dual approach ensures that we can leverage the strengths

of each model type depending on the specific needs and constraints of the project.

4.5 Prompt Engineering

One of the key components of our AI Assistant is its ability to generate contextually

accurate form fields based on the relationships between other fields. In the Digitalisation

QHSE domain, this process is enhanced by leveraging ISO standards, such as ISO 9001,

ISO 14001, and ISO 45001, to inform and guide the generation of form fields. These

standards provide structured frameworks that define specific requirements, processes, and

data flows.

4.5.1 Extracting Guidelines from ISO Standards

ISO standards provide detailed guidelines on how different fields and processes relate to

each other within the Quality, Health, Safety, and Environmental management systems.

These guidelines are critical for ensuring compliance and consistency in form completion.

For example, ISO 9001 specifies the relationship between quality management processes

and documentation requirements, while ISO 45001 focuses on occupational health and

safety data.

To enable the AI Assistant to generate form fields based on these relationships, we

extracted key principles and rules from the ISO standards and incorporated them into

the prompt engineering process. This involved identifying dependencies between fields as

outlined by the ISO guidelines, such as how risk assessments (ISO 45001) may impact

safety measures, or how environmental performance data (ISO 14001) is tied to specific

compliance indicators.

4.5.2 Guiding the Model with ISO-Based Prompts

Using the extracted guidelines, we crafted specific prompts that direct the model to gener-

ate form fields in alignment with ISO standards. These prompts serve as structured inputs,

ensuring that the model adheres to the logical relationships and regulatory requirements

49

4.5. Prompt Engineering Chapter 4. AI Assistant

defined in the system. For example, when a user inputs data related to quality control,

the AI Assistant is prompted to suggest fields related to corrective actions and preventive

measures, as required by ISO 9001.

This prompt engineering process is crucial for maintaining the integrity and relevance

of the generated fields, ensuring that they not only reflect user inputs but also comply

with international standards. By embedding ISO guidelines into the prompt structure,

we improve the accuracy of field generation and ensure that the resulting forms meet the

regulatory and procedural requirements of the QHSE domain.

4.5.3 Improving Data Generation Through ISO Compliance

The use of ISO guidelines as a foundation for prompt engineering not only improves

the AI Assistant’s ability to generate contextually appropriate fields but also enhances

data quality and consistency. By following established standards, the model ensures that

the generated data fields align with best practices, which is essential for auditability,

compliance, and operational efficiency.

This approach also simplifies the form completion process for users, as they are guided

by ISO-compliant prompts that automatically generate relevant fields based on their in-

puts. This minimizes the risk of errors and omissions, ensuring that all necessary infor-

mation is captured according to regulatory standards.

4.5.4 Limitation

While this method has shown promising results, there are several limitations that need to

be addressed.

One major limitation is the need for a separate model, each with its own fine-tuned

prompts and domain-specific data, for various aspects of QHSE. For instance, when

generating the ”Analyse des causes,” the ISO-extracted guidline 5M method (Matériel,

Méthode, Main-d’œuvre, Milieu, Management) is a highly effective tool in root cause

analysis. However, this approach is not universally applicable, especially when moving to

the next step of generating ”Action corrective.”

The 5M method focuses primarily on diagnosing problems rather than proposing so-

lutions. As a result, it lacks the depth needed to guide the generation of actionable and

effective corrective measures. This gap highlights the need for different models or exten-

sions of the existing model tailored to various aspects of the QHSE process. For example,

generating corrective actions may require additional ISO guidelines or methodologies, such

as PDCA (Plan-Do-Check-Act), which is more suited for formulating corrective strategies.

This limitation underscores the complexity of automating QHSE processes and the

necessity of designing multi-layered models that can understand and address domain-

specific needs at each step of the process. Without these specialized models, the results

may lack precision and fail to meet the compliance requirements of diverse industries

within the QHSE framework.

50

4.6. Finetuning Chapter 4. AI Assistant

While the extraction of guidelines is currently done manually, there are potential ways

to automate this process, which could improve efficiency and scalability. One approach

explored was the use of Retrieval-Augmented Generation (RAG) systems to extract guide-

lines directly from relevant ISO standards and documentation. However, RAG systems

proved to be ineffective in this context because they primarily focus on retrieving text

similar to the input, rather than understanding and extracting complex guidelines that

are not directly correlated to the input data.

RAG systems are proficient at finding text passages that match the input query, but

they struggle to grasp the deeper, more structured relationships between different fields

and guidelines. Guidelines in the QHSE context often depend on intricate frameworks

like the 5M method or other compliance-specific methodologies, which require a deeper

understanding of the relationships between non-conformities and corrective actions.

4.6 Finetuning

Given the relatively small dataset available for training, while the initial results from both

GPT and LLaMA3 models were promising, there remains significant room for improve-

ment. To enhance the model’s performance, fine-tuning is necessary to tailor it more

closely to the specific needs of the Digitalisation QHSE domain.

Fine-tuning involves adjusting the pre-trained model to better understand and generate

form fields based on the unique structure and requirements of QHSE forms. By exposing

the model to domain-specific data and gradually refining it, we can improve the accuracy

and contextual relevance of its predictions.

During this process, we focus on optimizing key aspects such as the relationships

between fields, handling complex interdependencies, and ensuring that the generated fields

are both accurate and logically connected. This fine-tuning process allows the model to

learn from the limited dataset more effectively, compensating for the small data size by

increasing its domain-specific proficiency.

The goal of fine-tuning is to strike a balance between generalization and specialization,

ensuring that the model performs well not only on the training data but also on new,

unseen forms, ultimately leading to a more reliable and user-friendly AI Assistant.

4.7 Few-Shot Learning

To address the challenges posed by the small dataset, we are exploring the use of few-

shot learning as a solution. Few-shot learning allows a model to generalize and make

accurate predictions even with a limited amount of training data by leveraging pre-existing

knowledge from large, pre-trained models.

In this approach, instead of requiring extensive domain-specific data, the model is

provided with a few examples (known as ”shots”) of how form fields are structured and

related to one another. By incorporating these examples into the learning process, the

51

4.8. Evaluation Chapter 4. AI Assistant

model can infer patterns and generate accurate form field predictions without the need

for a large dataset. This is particularly useful in domains like Digitalisation QSE, where

comprehensive datasets are difficult to obtain.

Few-shot learning reduces the dependency on massive datasets by utilizing the inherent

capabilities of advanced language models like GPT and LLaMA3, which are already trained

on a vast range of text data. The few examples provided help the model adapt to the

specific task of generating form fields based on limited input. This technique significantly

enhances the performance of the AI Assistant, making it more effective despite the data

constraints.

By leveraging few-shot learning, we can mitigate the impact of the small dataset and

still achieve high accuracy and relevance in the generated form fields, ensuring the AI

Assistant remains a valuable tool for form completion.

Figure 4.1: Fewshot Learning Example

4.8 Evaluation

In this section, we evaluate the performance of the models using both fine-tuning and

few-shot learning approaches for LLaMA3 and GPT-3.5. The evaluation focuses on the

accuracy, efficiency of the AI Assistant in the Digitalisation QSE context. The follow-

ing table summarizes the results of the four model configurations: LLaMA3 Fine-Tuned,

LLaMA3 Few-Shot Learning, GPT-3.5 Fine-Tuned, and GPT-3.5 Few-Shot Learning.

Model Accuracy Inference Time

LLaMA3 Fine-Tuned Low Medium

LLaMA3 Few-Shot Learning High Slow

GPT-3.5 Fine-Tuned Low Fast

GPT-3.5 Few-Shot Learning Best Slowest

Table 4.2: Model Evaluation: Accuracy and Inference Time

52

4.9. Integrating Chapter 4. AI Assistant

4.8.1 Performance

From the results, GPT-3.5 Few-Shot Learning emerges as the best-performing model in

terms of accuracy, despite having a slow inference time. making it ideal for tasks where

precision is critical, though less suited for real-time applications requiring fast responses.

4.8.2 Slow Inference Time in Few-Shot Learning

The slow inference times observed in few-shot learning models stem from the additional

computational overhead required to process the small set of examples (or ”shots”) provided

with each request. Unlike fine-tuned models, few-shot learning requires the model to

continually reference these examples to generate accurate predictions, which increases the

complexity of the computation.

While few-shot learning offers significant flexibility, especially with small datasets, its

slower inference time can be a disadvantage for applications requiring rapid responses.

This is particularly relevant for real-time form generation tasks, where the user expects

immediate feedback. Despite this, few-shot learning’s strength in handling limited data

makes it a powerful option for our project.

4.9 Integrating

To facilitate the use of the AI Assistant in generating form fields, we have hosted the model

on a cloud-based server and created an API. This API allows seamless communication

between the front end and the model, enabling the automatic generation of fields based

on user input and ISO guidelines.

The API is designed to handle requests from the front-end application, which sends

relevant information such as:

• Form context: The specific type of form being used (e.g., ”Non-conformité”, ”Ex-

igence Légale”).

• Guidelines: Which ISO guidelines or methodologies (e.g., 5M method, ISO 9001,

ISO 45001) should be applied.

• Field requirements: What fields need to be generated or populated.

• Used fields: What fields are filled, and their values.

By hosting the model on a server and setting up a robust API, we ensure that the front-

end can efficiently request and retrieve generated form fields without any interruption to

the user experience. This integration not only automates a significant portion of the QHSE

form completion process but also ensures compliance with ISO standards by embedding

these guidelines directly into the generation pipeline.

53

4.10. The model in action in Betterfly Chapter 4. AI Assistant

4.10 The model in action in Betterfly

Figure 4.2: Assistant icon

Figure 4.3: Data generated

4.11 Conclusion

In this project, we developed an AI Assistant aimed at automating the generation of

form fields, specifically within the Digitalisation QHSE domain. using domain-specific

guidelines and ISO standards, the AI system enhances the efficiency and accuracy of form

completion, while reducing the time and effort required for professionals to complete their

documentation.

54

4.11. Conclusion Chapter 4. AI Assistant

Despite some limitations, such as the need for domain-specific models and the chal-

lenges posed by small datasets, we have explored solutions like few-shot learning and

fine-tuning models. The integration of ISO guidelines into prompt engineering further

ensures that the AI-generated outputs align with established standards and compliance

requirements.

Through the development of a cloud-hosted model and API, we successfully integrated

the AI Assistant into our front-end interface. This project demonstrates the potential of

AI in enhancing productivity and compliance in the QHSE sector by automating routine

yet critical tasks.

Looking ahead, future work will focus on improving model accuracy, refining domain-

specific guidelines, and exploring more advanced techniques for automating the extraction

and application of ISO standards in the generation process. With these improvements,

the AI Assistant can become an even more valuable tool in the digital transformation of

QSE practices.

55

Conclusion and Perspectives

This thesis presents two projects focused on using AI to enhance automation and efficiency

in two distinct domains: chart configuration generation and form field generation in the

QHSE domain. In the first project, we developed a system capable of generating chart

configurations based on user inputs, leveraging a model fine-tuned to understand and

replicate Chart.js configurations. This significantly improved the user experience, enabling

them to create complex charts more efficiently without requiring deep technical knowledge.

The second project focused on an AI Assistant for generating form fields using pre-

defined guidelines and ISO standards. By automating this process, we addressed the

challenges of form completion in the QHSE domain, making it more streamlined and

compliant with regulatory standards.

Both projects demonstrated the utility of AI in automating tasks that traditionally

required manual input and deep domain expertise, proving that AI models can greatly

enhance user experience and productivity.

Limitations

Despite the success of both projects, there are notable limitations:

In the chart configuration project, while the system works well for predefined chart

types, its flexibility in handling completely new or highly customized configurations is still

somewhat limited without extensive fine-tuning. Although the dataset used for training

was comprehensive, the model is still dependent on understanding specific patterns, and

more advanced use cases, such as creating highly complex or novel chart types, could

benefit from further development.

For the AI Assistant, one of the main challenges is the need for domain-specific models.

The current system requires separate models for each guideline. The reliance on predefined

guidelines also limits its ability to adapt to new regulatory frameworks without additional

model training or updates. Furthermore, the small dataset posed challenges in achieving

high accuracy, especially for generating highly specialized fields.

Another limitation of both projects is the reliance on manual extraction of guidelines

and prompts, which, while effective, limits scalability. Automating this process remains a

challenge, particularly in the QSE domain, where the guidelines are complex and diverse.

56

4.11. Conclusion Chapter 4. AI Assistant

Future Work

To address the limitations identified, future work will focus on several key areas:

1. Dataset Expansion and Model Improvement: In both projects, expanding

the dataset and improving the fine-tuning of the models will be crucial to enhancing

accuracy and flexibility. This will involve collecting more domain-specific data and utilizing

techniques like few-shot learning to optimize performance, even in cases of limited data.

2. Utilizing Text2SQL Models for Chart Configuration: A key improvement

in the chart configuration project would be the incorporation of Text2SQL models. These

models are highly accurate and can transform natural language descriptions into SQL

queries that extract the required data from the database. By applying this technology,

the system can generate charts dynamically from SQL data, further improving its ability

to handle new and highly customized configurations without the need for extensive manual

configuration.

3. Automation of Guideline Extraction: For the QSE project, automating the

extraction and application of guidelines from ISO standards and other regulatory frame-

works is a priority. Future developments could include the use of knowledge graphs,

ontology-based systems, or more advanced machine learning techniques to extract and

apply guidelines dynamically.

4. Unified Models for QHSE: A key area for improvement is the development of

unified models capable of handling multiple guidelines and methodologies, reducing the

need for separate models for each task. This will increase the scalability and adaptability

of the AI Assistant, making it more applicable across various contexts.

5. Real-Time Performance Optimization: As both projects deal with real-time

user interaction, optimizing inference times for few-shot learning and reducing model la-

tency will be crucial.

By addressing these areas, future iterations of these projects will be better equipped

to handle more complex use cases, provide greater flexibility, and further enhance the user

experience through automation.

57

References
Category Resource

Website EQUALITY

Website Betterfly

Website Chart.js: Simple, clean and engaging HTML5 charts for developers

Research Paper Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J. D., Dhariwal,

P., Neelakantan, A. (2020). Language Models are Few-Shot Learners.

Advances in Neural Information Processing Systems.

Research Paper Examining Autocompletion as a Basic Concept for Interaction with Gen-

erative AI

Research Paper Automating Chart Generation: A Generative AI Approach to Data Vi-

sualization

Research Paper Generative AI for Visualization: State of the Art and Future Directions

Research Paper Source code auto-completion using various deep learning models under

limited computing resources

Research Paper Auto-completion Using Deep Learning: Comparing and Discussing Cur-

rent Language-Model-Related Approaches

Research Paper Text2Chart: A Multi-Staged Chart Generator from Natural Language

Text

Research Paper Evaluating the Text-to-SQL Capabilities of Large Language Models

Research Paper Enhancing Natural Language Query to SQL Query Generation Through

Classification-Based Table Selection

Research Paper The Application of Enterprise QHSE Management Performance Evalu-

ation System Based on Maturity Model

Research Paper Overview of quality health safety and environmental management sys-

tems implementation in Zimbabwe

Research Paper Machine Learning for Synthetic Data Generation: A Review

Research Paper A Systematic Survey of Prompt Engineering in Large Language Models:

Techniques and Applications

Documentation Microsoft Azure Machine Learning Documentation

Documentation Hugging Face Transformers Documentation

ISO Standard ISO 9001:2015 Quality Management Systems – Requirements. Interna-

tional Organization for Standardization.

58

https://www.equality.ma/
https://betterfly.ma/
https://www.chartjs.org/
https://arxiv.org/abs/2005.14165
https://arxiv.org/abs/2005.14165
https://arxiv.org/abs/2005.14165
https://ar5iv.labs.arxiv.org/html/2201.06892
https://ar5iv.labs.arxiv.org/html/2201.06892
https://ijnms.com/index.php/ijnms/article/view/264
https://ijnms.com/index.php/ijnms/article/view/264
https://ar5iv.labs.arxiv.org/html/2404.18144v1
https://link.springer.com/article/10.1007/s40747-022-00708-7
https://link.springer.com/article/10.1007/s40747-022-00708-7
https://paperswithcode.com/paper/automated-source-code-generation-and-auto
https://paperswithcode.com/paper/automated-source-code-generation-and-auto
https://ar5iv.labs.arxiv.org/html/2104.04584
https://ar5iv.labs.arxiv.org/html/2104.04584
https://ar5iv.labs.arxiv.org/html/2204.00498
https://link.springer.com/chapter/10.1007/978-3-031-62495-7_12
https://link.springer.com/chapter/10.1007/978-3-031-62495-7_12
https://link.springer.com/chapter/10.1007/978-3-642-38433-2_113
https://link.springer.com/chapter/10.1007/978-3-642-38433-2_113
https://link.springer.com/article/10.1007/s42797-023-00090-8
https://link.springer.com/article/10.1007/s42797-023-00090-8
https://arxiv.org/abs/2302.04062
https://arxiv.org/abs/2402.07927
https://arxiv.org/abs/2402.07927
https://docs.microsoft.com/en-us/azure/machine-learning/
https://huggingface.co/transformers/
https://www.iso.org/standard/62085.html
https://www.iso.org/standard/62085.html

This thesis, conducted as part of an end-of-studies internship for a Master’s degree in

Artificial Intelligence and Virtual Reality at the Faculty of Sciences - Ibn Tofail University

presents two projects aimed at utilizing AI to enhance automation and efficiency in two

distinct areas: chart configuration generation and form field generation within the QHSE

domain. The first project developed a system that generates chart configurations based on

user inputs, leveraging a model fine-tuned to understand and replicate Chart.js configura-

tions. This significantly improves the user experience by enabling users to create complex

charts more efficiently and dynamically, without requiring extensive technical knowledge.

The second project focused on creating an AI Assistant for generating form fields based

on predefined guidelines and ISO standards in the QHSE domain. This automation ad-

dresses challenges related to form completion, making the process more streamlined and

compliant with regulatory standards. Both projects demonstrated how AI can automate

tasks that traditionally required manual input and domain-specific expertise, proving that

AI can greatly improve user experience and productivity.

Ce mémoire, réalisé dans le cadre d’un stage de fin d’études pour un Master en Intelligence

Artificielle et Réalité Virtuelle à la Faculté des Sciences - Université Ibn Tofail présente

deux projets visant à utiliser l’IA pour améliorer l’automatisation et l’efficacité dans

deux domaines distincts : la génération de configurations de graphiques et la génération

de champs de formulaires dans le domaine QHSE. Le premier projet a développé un

système qui génère des configurations de graphiques en fonction des entrées utilisateur, en

s’appuyant sur un modèle affiné pour comprendre et reproduire les configurations Chart.js.

Cela améliore considérablement l’expérience utilisateur en permettant aux utilisateurs de

créer des graphiques complexes de manière plus efficace et dynamique, sans nécessiter

de connaissances techniques approfondies. Le deuxième projet s’est concentré sur la

création d’un assistant IA pour générer des champs de formulaire en fonction de directives

prédéfinies et de normes ISO dans le domaine QHSE. Cette automatisation répond aux

défis liés à la saisie de formulaires, rendant le processus plus rationalisé et conforme aux

normes réglementaires. Les deux projets ont démontré comment l’IA peut automatiser des

tâches qui nécessitaient traditionnellement une saisie manuelle et une expertise spécifique

au domaine, prouvant que l’IA peut grandement améliorer l’expérience utilisateur et la

productivité.

59

	Table of Contents
	List of Figures
	List of Tables
	General Introduction
	Company introduction
	Introduction
	E-QUALITY ENGINEERING
	Overview
	Services and Expertise
	Experience and Impact

	Solution QHSE
	Definition and Importance
	Betterfly’s Role

	Fundamental Values
	Core Values
	Culture and Ethics

	Betterfly
	Company Overview
	Product and Services

	Data In Betterfly
	Data Management
	Use of Data

	Technologies Used - Betterfly
	Tech Stack
	Integration and Scalability

	Charts In Betterfly
	Chart Types and Functions
	Customization and Interaction

	AI Assistants in Betterfly
	Role of AI
	Adaptability and Customization
	Future Scope

	Betterchart problem statement
	Similar Applications
	Limitations

	Solution
	Approach
	Conclusion

	Tools and Technologies used
	Introduction
	LLMs
	Definition of LLMs
	Types of LLMs
	State of the art
	Applications of LLMs
	Current limitations and challenges
	Some benchmarks and comparisons

	Languages
	Python
	React
	NodeJs
	SQL
	GraphQL

	Platforms
	Hugginface
	Google Colab
	Azure
	AWS Amplify

	Frameworks and Libraries
	ChartJS
	Datasets
	Transformers
	Unsloth
	Torch
	Accelerate
	Scipy
	Xformers
	Safetensors
	peft
	sklearn
	PyPDF2

	Communications and meeting tools
	Google Meet
	Notion

	Industrialization tools
	Docker
	Git
	Github

	Conclusion

	BetterChart
	Introduction
	Approach followed
	System Architechture overview

	Setting up BetterChart - (DynamicChartJS)
	Training
	Data Collection
	Data Augmentation
	Data processing
	Choice of model

	Prompt Engineering
	Finetuning
	What is Fine-tuning?

	Results
	Evaluation
	Result interpretation
	Chart Type
	X
	Y
	X Group
	Y Group
	isStacked
	isFiltered
	Filter Key
	Filter Value
	Filter Operator
	Formula
	Colors

	Similarity check
	Graph synthese
	Introduction
	Models
	Implementation Approach

	Integrating
	The Model in Action in Betterfly
	Conclusion

	AI Assistant
	Introduction
	Similar Applications
	Google Forms and Auto-complete Features
	Intelligent CRMs
	Medical Record Systems

	Limitations
	Domain-Specific Challenges
	Lack of Training Data

	Training
	Data Collection
	Data processing
	Choice of Model

	Prompt Engineering
	Extracting Guidelines from ISO Standards
	Guiding the Model with ISO-Based Prompts
	Improving Data Generation Through ISO Compliance
	Limitation

	Finetuning
	Few-Shot Learning
	Evaluation
	Performance
	Slow Inference Time in Few-Shot Learning

	Integrating
	The model in action in Betterfly
	Conclusion

	Conclusion and Perspectives
	References

